
1

Introduction to Programming

Lecture 1

Object-Oriented Programming

Lecture 1 Object-Oriented Programming 2

Agenda
• What is Program?

• Ideal Computing Way

• Where We Are in Computers?

• Interaction with the Computer

• Where are we going?

• Programming and its aspects

• Course Objective

• Object-Oriented Programming

• Interpreting vs. Compiling Programs

• Java Program Development Cycle

• Programming Tools

• Learn Programming

• Scare of Programming

• First Java Program

• Readings

2

Lecture 1 Object-Oriented Programming 3

What is a Program?
• Model of complex system

– model: simplified representation of salient features of something, either tangible or
abstract

– system: collection of components that work closely together

• Sequences of instructions expressed in specific programming language:
– syntax: grammatical rules for forming instructions

– semantics: meaning/interpretation of instructions

• Instructions written (programmed/coded) by programmer
– coded in a specific programming language

– programming languages allow you to express yourself more precisely than natural
language

– as a result, programs cannot be ambiguous

– all instructions together are called source code

• Executed by computer by carrying out individual instructions

• Real world example:
– library catalog, word processor, video game, ATM

Lecture 1 Object-Oriented Programming 4

Two Views of a Program

user interface

software layers hidden

by user interface

user’s

view

programmer’s

view

3

Lecture 1 Object-Oriented Programming 5

The Ideal Way to Do Computing

• The ideal way to ask computer to do something is

to order it in a natural language e.g.

– I want to view this webpage

– Calculate my annual tax

– etc.

• However, today’s computer’s are not intelligent

enough to understand our orders in natural

language.

Lecture 1 Object-Oriented Programming 6

Where We Are in Computers?

• At the very basic level computers use the concept
of an electrical pulse.

– Low voltage is represented as 0

– High voltage is represented as 1

• To instruct a computer we need ask the computer
in the language of 0s and 1s commonly known as
machine language.

• For instance 73 in a number in natural language in
the language of 0s and 1s, it becomes 1001001

4

Lecture 1 Object-Oriented Programming 7

Machine Language: Our First

Interaction with the Computer

• Finding an average of two numbers in

machine language.
10110011 00011001

01111010 11010001 10010100

10011111 00011001

01011100 11010001 10010000

10111011 11010001 10010110

• Not very intuitive way of working

• Not possible for humans to achieve a lot using machine

language

Lecture 1 Object-Oriented Programming 8

One Step Beyond – Assembly Language

• One level above machine language is assembly
language

MOV 0, SUM

MOV NUM, AC

ADD SUM, AC

STO SUM, TOT

• More understandable but still very difficult for
many of us.

• An assembler translates assembly language into
machine language.

5

Lecture 1 Object-Oriented Programming 9

Another Step – High-level

Languages

• High-level languages is another level above

machine language.

X = (Y + Z) / 2

• Much more understandable.

• A compiler translates high-level language

into assembly language.

Lecture 1 Object-Oriented Programming 10

Where are we going?

• Te next step in computing is to use natural

language over a high-level language.

• But we are many many years away from it.

• A lot of research needs to be carried out

before we actually see this.

• Until then our task is to use high-level

languages in its best possible ways

6

Lecture 1 Object-Oriented Programming 11

What is Programming?

• When we say “programming” we are

actually referring to the science of

transforming our intentions in a high-level

programming language.

Lecture 1 Object-Oriented Programming 12

Many Aspects of Programming
• Programming is controlling

– computer does exactly what you tell it to

• Programming is teaching
– computer can only “learn” to do new things if you tell it how

• Programming is problem solving
– always trying to make computer do something useful — i.e., finding an optimal travel route

• Programming is creative
– must find a good solution out of many possibilities

• Programming is modelling
– describe salient (relevant) properties and behaviors of a system of components (objects)

• Programming is abstraction
– identify important features without getting lost in detail

• Programming is concrete
– must provide detailed instructions to complete task

7

Lecture 1 Object-Oriented Programming 13

What are we doing in this course?

• Learn programming in a high-level programming
language.

• Programming has many paradigms
– Procedural

– Object-Oriented

– Functional

– Logic

• We will study Object-Oriented Programming
using ‘Java’, a popular high-level object-oriented
programming language.

Lecture 1 Object-Oriented Programming 14

Object-Oriented Programming

• OOP: Now the dominant way to program, yet it is almost 40

years old! (Simula ’67 and Smalltalk ’72 were the first OOPLs)

– Dr. Alan Kay received ACM's Turing Award, the "Nobel Prize of

Computing,“ in 2003 for Smalltalk, the first complete dynamic OOPL

• It was slow to catch on, but since the mid-90’s everybody’s been
doing it!

• OOP emphasizes objects, which often reflect real-life objects
– have both properties and capabilities

– i.e., they can perform tasks: “they know how to...”

8

Lecture 1 Object-Oriented Programming 15

OOP as Modeling

• In OOP, model program as collection of cooperating objects
– program behavior is determined by group interactions

– group interactions are determined by individual objects

• In OOP, objects are considered anthropomorphic
– each is “smart” in its specialty

– i.e., bed can make itself, door can open itself, menu can let selections be picked

– but, each must be told when to perform actions by another object — so objects must cooperate
to accomplish task

• Each object represents an abstraction
– a “black box”: hides details you do not care about

– allows you as the programmer to control program’s complexity — only think about salient
features

• So, write programs by modeling problem as set of collaborating components
– you determine what the building blocks are

– then put them together so they cooperate properly

– like building with smart Legos that you design!

Lecture 1 Object-Oriented Programming 16

Interpreting vs. Compiling Programs

• An alternative to compiling your program is to interpret your program

– each line of your program is translated into machine language and

immediately executed

• Like translating between natural languages

– Compiler: human translator translates book in its entirety and then

translated book is printed and read

– Interpreter: human interpreter translates each spoken statement in

sequence as speaker is speaking

9

Lecture 1 Object-Oriented Programming 17

Running Java Programs

• Java uses both compilation and interpretation in a two-step process

• Compiles program into bytecodes

– bytecode is close to machine language instructions, but not quite — it is a

generic “machine language”

– does not correspond to any particular machine

• Virtual Machine (VM) interprets bytecodes into native machine language and runs

it

– different VM exists for different computers, since bytecode does not correspond

to a real machine

• Same Java bytecodes can be used on different computers without re-compiling

source code

– each VM interprets same bytecodes

– allows you to run Java programs by getting just bytecodes from Web page

• This makes Java code run cross-platform

– marketing says, “Write once, run anywhere!”

– true for “pure Java,” not for variants

Lecture 1 Object-Oriented Programming 18

Java Program Development Cycle

10

Lecture 1 Object-Oriented Programming 19

Programming Tools

• Key Tools for Programming

– Editors: Allows user to enter the program. Notepad, Emacs, etc are all
editors.

– Compilers: Translates the program into target code (in machine
language).

– Debuggers: Allows a programmer to run the program to see the execution
of the program and correct any errors.

– Profilers: Used to evaluate program’s performance.

– Integrated Development Environment (IDE): Combines editor,
compiler, debugger and profiler or a subset into one tool.

• Common Java IDEs are Eclipse, Netbeans, BlueJ, and DrJava.

• We will use DrJava IDE for the programming assignments in this
course.

Lecture 1 Object-Oriented Programming 20

A Word of Caution

• IDEs, editors, debuggers, and other
programming tools do not write program
themselves. They merely provide some help
in writing a program.

• Therefore,

THERE IS NO SHORTCUT TO
PROGRAMMING SKILLS AND

EXPERIENCE.

11

Lecture 1 Object-Oriented Programming 21

How to Learn Programming

• Everybody learns programming at their own

pace.

• So do not be impressed by the person sitting

next to you because he coded a given

program in 20 minutes and you are taking

more then an hour.

• Speed programming does not necessarily

mean quality of the final output.

Lecture 1 Object-Oriented Programming 22

How to Learn Programming (cont’d)

• In a Nutshell

1. Writing a good description of the problem.

2. Breaking down the given problem into small pieces.

3. Turning small pieces into pseudo-code.

4. Deciding the integration mechanism of the pieces.

5. Writing the program for each piece.

6. Integrating all the pieces together.

12

Lecture 1 Object-Oriented Programming 23

Scare of Programming?

• Why most students are afraid of programming

– Paradigm Change

• Programming is totally different paradigm. You are working

on something and you cannot even touch the final output you

can only feel it. It is different then other subjects like Physics,

Chemistry, Biology, etc.

– Peer Pressure

• Some people are naturally good in programming so others

think that this is a natural ability and they cannot learn it.

Lecture 1 Object-Oriented Programming 24

Scare of Programming? (cont’d)

– Lack of Understanding in Fundamental Concepts

• Some people start programming without a clue of what is

going on behind the scene in the computer. As a result they

have a flawed understanding from day one of their

programming experience

– Time Factor: Programming takes a lot of time

• Programming may take a lot of time at the start but once a

person is comfortable with the concepts and has mastered the

basic skills it is just like any other profession.

13

Lecture 1 Object-Oriented Programming 25

A Word of Advice

• Without good command on programming

any qualification in Computer Science,

Computer Engineering, Information

Technology and Software Engineering is

“worthless”.

• There is an acute shortage of programmers

in the global software market and with time

this shortage is increasing.

Lecture 1 Object-Oriented Programming 26

First Java Program

class First

{

public static void main(String arg[])

{

System.out.println("Engr. M Haroon Yousaf welcomes you in
OOP");

}

}

14

Lecture 1 Object-Oriented Programming 27

Readings

Book Name: Object-oriented Programming in
JavaTM Textbook

Author: Richard L. Halterman

Content: Chapter 1

Book Name: Object Oriented Programming in Java
– A Graphical Approach

Author: Kathryn E. Sanders & Andries van Dam

Content: Chapters 0

Lecture 1 Object-Oriented Programming 28

Acknowledgements

• While preparing this course I have greatly

benefited from the material developed by the

following people:

– Andy Van Dam (Brown University)

– Mark Sheldon (Wellesley College)

– Robert Sedgewick and Kevin Wayne (Princeton

University)

– Mark Guzdial and Barbara Ericsson (Georgia Tech)

– Richard Halterman (Southern Adventist University)

